The Phase Diagram for the Binary System K₂CrO₄-CaCrO₄*

M. M. KARNOWSKY, R. P. CLARK, † AND R. M. BIEFELD

Sandia Laboratories, Albuquerque, New Mexico 87115

Received May 11, 1976; in revised form July 8, 1976

The phase diagram for the binary system K₂CrO₄-CaCrO₄ has been determined for CaCrO₄ concentrations up to 60 mole %, using the techniques of differential thermal analysis, X-ray diffraction, and drop calorimetry. Essential features of the phase diagram are: the solid-solid phase transition for pure K₂CrO₄ at 670°C, β -K₂CrO₄ $\Rightarrow \alpha$ -K₂CrO₄; a eutectoid reaction at 14 mole % CaCrO₄ and 548°C, β -K₂CrO₄ $\Rightarrow \alpha$ -K₂CrO₄ + K₂CrO₄; a peritectoid event at 50 mole % CaCrO₄ and 640°C, β -K₂CrO₄ + CaCrO₄ $\Rightarrow \alpha$ -K₂CrO₄; and a eutectic reaction at 51 mole % CaCrO₄ and 678°C, L $\Rightarrow \beta$ -K₂CrO₄ + CaCrO₄. X-ray diffraction studies lead to the determination of the unit cell dimensions for the K₂CrO₄ · CaCrO₄ double salt, a *C*-centered monoclinic form with $a_0 = 7.615(6)$ Å, $b_0 = 22.797(15)$ Å, $c_0 = 9.777(9)$ Å, $\beta = 115.45(5)^\circ$.

Introduction

Metal chromates are often used as cathodic depolarizers in thermal voltaic cells. One common thermal cell employs a calcium anode, an iron cathode, CaCrO₄ as the cathodic depolarizer, and a LiCl-KCl eutectic electrolyte (1).

In this electrochemical system, an undesirable side reaction can produce a metallic Li-Ca alloy which is molten above $231^{\circ}C(2)$. Under certain conditions, this molten metal can bridge the anode and cathode, causing shorting and electrical noise. Replacement of the CaCrO₄ depolarizer with a mixture of CaCrO₄ and K₂CrO₄ has been found to retard the formation of the troublesome Ca-Li alloy (3). The knowledge of the phase diagram of this binary system contributes to the understanding of the thermal cell operation.

The chromate system, $CaCrO_4$ -Na₂CrO₄, has been investigated by Vil'nyanskii and Pudovkina (4), and Khitrov (5) studied the

* This work was supported by the United States Energy Research and Development Administration.

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain reciprocal system K⁺, Ca^{2+}/CrO_4^{2-} , NO_3^{-} , but no data are given for the binary of interest. In the present work, the phase relationships were studied by thermal methods with verification of the interpretations by X-ray diffraction and calorimetry.

Because CaCrO₄ is unstable above $1000^{\circ}C$ (6) at ambient pressure, compositions studied in the present investigation were limited to those with CaCrO₄ concentrations no greater than 60 mole %.

Experimental

Materials

High-purity CaCrO₄ (assay 99.85%) was prepared from reagent-grade CaCO₃ and Na₂CrO₄, using a method previously described (7). The K₂CrO₄ was analytical reagent grade from Fisher Scientific Company and assayed >99.6%. The CaCrO₄ was vacuumdried at 400°C for 4 hr and K₂CrO₄ at 120°C for 2 hr.

Apparatus and Procedure

A series of K_2CrO_4 -CaCrO₄ compositions was prepared and analyzed by differential thermal analysis with confirmation of the

[†] Author to whom correspondence should be addressed.

interpretation by X-ray diffraction, including elevated temperature diffraction, and by drop calorimetry measurements. Samples weighing approximately 15 g were prepared by thoroughly mixing the desired amounts of powdered CaCrO₄ and K_2CrO_4 . In some cases, the samples were prefused to assure homogeneity. Each sample was subjected additionally to several heating cycles well into the melt which also promoted homogeneity.

The sample and an equal weight of calcined alumina reference material were placed in similar quartz tubes. The tubes were placed at symmetrical positions in a massive nickel holder and heated in a vertical tube furnace. Pt-Pt, 10% Rh thermocouples were placed in quartz wells surrounded by the reference and sample materials. Absolute temperature, measured in the sample, and the differential temperature were recorded. The details of the sample holder-thermocouple arrangement have been described elsewhere (8).

Only cooling curves were used for equilibrium data. Cooling rates ranging from 6 to 9° C/min were employed. The sample temperature was monitored on a dual-channel recorder (9) which had a 2-mV display and automatic ranging to 20 mV which was indicated by a second pen. The differential temperature was displayed on the same chart by a third pen.

Room temperature, X-ray powder diffraction patterns were obtained with a 114.6-mmdiameter Philips camera using CuK α ($\lambda =$ 1.54178 Å) Ni-filtered radiation. Elevated temperature X-ray data (CuK α radiation) were obtained on a Materials Research Corporation high-temperature diffractometer attachment in conjunction with a Norelco powder diffractometer equipped with a graphite monochromator and a scintillation detector. Standard precession and Weissenberg instruments were used for photography of the single crystal patterns.

Enthalpy versus temperature curves were obtained for two mixtures of particular interest. Drop calorimetry techniques previously described were used for these determinations (10).

Results

The phase diagram derived from the DTA data is shown in Fig. 1 with thermal discontinuities shown by the open circles. The outstanding thermal events are:

(A) The solid-state phase transition for pure K_2CrO_4 at 670°C, $\alpha K_2CrO_4 \rightleftharpoons \beta K_2CrO_4$. The α phase is the low-temperature orthorhombic structure as found in the JCPDS (formerly ASTM) card file, Card 15-365, derived from Pistorious (11). The β form is hexagonal.

(B) A eutectoid at 14 mole % CaCrO₄ and 548°C, β -K₂CrO₄ $\Rightarrow \alpha$ -K₂CrO₄ +K₂ CrO₄.

(C) A peritectoid event at 50 mole% CaCrO₄ and 640°C with the formation of the double salt, $K_2CrO_4 \cdot CaCrO_4$, $\beta \cdot K_2CrO_4 + CaCrO_4 \rightleftharpoons K_2CrO_4 \cdot CaCrO_4$.

(D) A eutectic event at 51 mole% CaCrO₄ and 678°C, Liquid $\rightleftharpoons \beta$ -K₂CrO₄ + CaCrO₄.

High-temperature X-ray diffraction studies on samples consisting of 6, 20, 50, and 56 mole % CaCrO₄ were made for verification of the interpretation of these events.

It should be stated that the exact temperatures could not be determined in conjunction with the use of the high-temperature diffractometer attachment; however, data can be reported in 50°C ranges. The results of the X-ray studies are:

TABLE I

Comparison of Observed and Calculated d-Spacings for K_2CrO_4 ·CaCrO₄

d observed (Å)	d calculated (Å)	h k l	I/I _o
6.61	6.586	1 10	30
4.78	4.788	0 4 1	30
3.88	3.837	ī 51	10
3.54	3.553	202	20
3.44	3.440	2 0 0	20
3.17	3.165	241	100
3.12	3.121	1 1 2	30
2.99	2.995	Ī 33	80
2.84	2.849	0 8 0	80
2.65	2.651	Ī 53	60
2.39	2.394	0 8 2	60
2.265	2.264	172	40
2.099	2.097	314	60
1.998	2.000	Ĩ93	10
1.974	1.974	192	20
1.946	1.951	3 3 1	10
1.903	1.903	402	60
1.847	1.846	3 5 1	40
1.773	1.770	Ĩ 55	10
1.745	1.745	084	10
1.699	1.700	2121	30
1.685	1.687	0 4 5	30
1.626	1.628	174	20
1.581	1.583	482	20
1.543	1.544	ī 13 3	10
1.447	1.446	3 11 1	10
1.424	1.425	0160	30
1.415	1.415	2 86	30
1.396	1.397	535	10
1.378	1.377	373	30
1.358	1.357	555	10
1.325	1.324	3 1 3 1	10
1.291	1.291	Ī 172	30
1.267	1.267	570	10
1.240	1.240	Ī 17 3	40

(A) 6 mole % CaCrO₄. From RT to 600°C, only α -K₂CrO₄ was detected. The amount of double salt is probably too small to detect. From 600 to 700°C, the pattern changes to that for β -K₂CrO₄. The pattern at 700°C is slightly different from that for β -K₂CrO₄, presumably due to the solution of CaCrO₄ in the β -K₂CrO₄ lattice. (B) 20 mole % CaCrO₄. From RT to 600°C, two phases exist, α -K₂CrO₄ and the double salt, K₂CrO₄ ·CaCrO₄ (the β -phase was not observed in the pattern). Above 600°C, only the β -K₂CrO₄ phase was found.

(C) 50 mole % CaCrO₄. From RT to 600°C only the K_2 CrO₄·CaCrO₄ double salt was found. From 600 to 700°C, β -K₂CrO₄ and CaCrO₄ were the phases detected.

These X-ray data were essential in establishing the peritectoid reaction. The DTA cooling curves were not definitive in this case, due to the sluggish attainment of equilibrium during cooling as the two solid phases, β -K₂CrO₄ and CaCrO₄, reacted to form the double salt, K₂CrO₄ · CaCrO₄. It is postulated that the product of the surface reaction (K₂CrO₄ · CaCrO₄) presented a barrier to the completion of the slow solid-state diffusion reaction. To overcome this sluggishness, the X-ray diffraction patterns were recorded after the samples had been heated at temperature for about 1 hr.

(D) 56 mole % CaCrO₄. From RT to 650°C, the double salt, $K_2CrO_4 \cdot CaCrO_4$, and CaCrO₄ were both detected. Above 650°C, the double salt lines disappeared and were replaced by the patterns for β -K₂CrO₄ and CaCrO₄.

Additional confirmation of the diagram in the vicinity of 45 to 55 mole % CaCrO₄ was made using drop calorimetry. Enthalpy versus temperature curves for a 45.3 mole % CaCrO₄ sample showed a change in slope around 525 to 550°C, a large discontinuity due to melting around 680°C, and a change in slope in the vicinity of 725 to 750°C. Enthalpy versus temperature curves for a 55.4 mole% CaCrO₄ sample show no change in slope below the mclting discontinuity at ~680°C. There is a probable slope change observed around 725 to 750°C corresponding to the liquidus line.

All of these measurements confirm the phase diagram as shown in Fig. 1.

The observed and calculated *d*-spacings for the $K_2CrO_4 \cdot CaCrO_4$ double salt at room temperature are given in Table I. No corrections for film shrinkage were made to the measured arc lengths due to the absence of observable back reflection lines. Relative intensities were visually estimated.

Precession and Weissenberg photographs of a single crystal of $K_2CrO_4 \cdot CaCrO_4$ indicated that the unit cell is monoclinic. From the extinction conditions observed in these photographs (hkl, h + k = 2n; h0l; l = 2n) the space group was established as either Cc (No. 9) or C2/c (No. 15) (12). The lattice parameters obtained by a least-squares fit of 35 measured reflections using the Nelson and Riley extrapolation function are

$$a_0 = 7.615(6)$$
 Å,
 $b_0 = 22.797(15)$ Å,
 $c_0 = 9.777(9)$ Å,
 $\beta = 115.45(5)^\circ$.

The density of $K_2CrO_4 \cdot CaCrO_4$ determined experimentally using an air pycnometer

CRYSTALLOGRAPHIC PARAMETERS					
	ρ (g/cm ³)	a ₀ (Å)	b ₀ (Å)	c ₀ (Å)	Form
α-K ₂ CrO ₄	2.732(13)	7.663	10.391	5.919	Orthorhombic Pnam
β -K ₂ CrO ₄ (High-temperatu	24.08(11) re modification	6.125 on)	6.125	8.245	Hexagonal (space group not known)
K₂CrO₄ · CaCrO₄	3.034" 3.012 ^b	7.615	22.797	9.777	Monoclinic $\beta = 115.45^{\circ}$ Cc or C2/c
CaCrO ₄	3.142°	7.242	7.242	6.290	Tetragonal I4 ₁ /amd

TABLE II Crystallographic Parameters

^a Theoretical.

^b Measured.

^c JCPDS card 8-458,

method is 3.012 ± 0.021 g/cm³. The theoretical density based on lattice parameters is 3.034 ± 0.006 g/cm³ with a unit cell containing eight formula units of the double salt.

The resulting unit cell dimensions, density, and crystal form are shown in Table II. Similar data for K_2CrO_4 , both α and β , and $CaCrO_4$, card 8-458, from the JCPDS tabulations are shown for comparison.

Acknowledgments

The authors wish to acknowledge with thanks the efforts of K. R. Grothaus for assistance in early DTA work and for extensive sample preparation, R. M. Merrill for the density of the double salt, and Dr. A. Rosenzweig of Oberlin College for many valuable discussions.

References

1. B. H. VAN DOMELEN AND R. D. WEHRLE, "A Review of Thermal Battery Technology," Proc. 9th Intersoc. Energy Conversion Eng. Conf., The American Society of Mechanical Engineers, 1974.

- 2. R. P. CLARK AND K. R. GROTHAUS, J. Electrochem. Soc. 118, 1680 (1971).
- 3. R. P. CLARK AND E. V. FORSMAN, "Development and Performance of a Miniature, High-Voltage Thermal Battery," Proc. 9th Intersoc. Energy Conversion Eng. Conf., The American Society of Mechanical Engineers, 1974.
- 4. YA. E. VIL'NYANSKII AND O. I. PUDOVKINA, Zh. Obshch. Khim. 18, 1033 (1948).
- 5. V. A. KHITROV, Zh. Obshch. Khim. 19, 32 (1949).
- V. T. ATHAVALE AND S. K. K. JATVAR, J. Indian Inst. Sci. 20A, 55 (1937).
- 7. R. P. CLARK, R. L. BLUCHER, AND H. J. GOLD-SMITH, J. Chem. Eng. Data 14, 65 (1969).
- M. M. KARNOWSKY AND A. ROSENZWEIG, *Trans.* Met. Soc. AIME 242, 2257 (1968).
- R. R. SOWELL, M. M. KARNOWSKY, AND L. C. WALTERS, J. Therm. Anal. 3, 119 (1971).
- 10. R. P. CLARK, J. Chem. Eng. Data 18, 67 (1973).
- 11. C. W. F. T. PISTORIUS, Z. für Phys. Chemie Neve Tolge 35, S 109 (1962).
- N. F. M. HENRY AND K. LONSDALE, "International Tables for Crystallography," Vol. 1, Kynock Press, Birmingham, England (1952).
- R. C. Weast, "Handbook of Chemistry and Physics," Chemical Rubber Co., 50th ed., Cleveland, Ohio (1969–1970).